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Written Homework 5

(1) Let
1 11
A= [2 1 4] '
Find a 3 x 2 matrix B with AB = I5. Is there more than one matrix B with this
property? Justify your answer.

(2) Find a 2 x 2 matrix A, which is not the zero or identity matrix, satisfying each of
the following equations.

a) A2=0
b) A2 = A
C)A2:]2

1
(3) Suppose that A is a matrix and b is a vector in R?. Suppose further that v = |2
3

5
and w = [—3| are both solutions to the equation Ax = b.

1
(a) How many solutions does the equation Ax = b have? Explain your answer.
(b) Find a nontrivial solution to the homogeneous system Ax = 0. Justify that it

is indeed a solution.
(4) Define T': R? — R? by

T 0 3 =2| |z
T Y =11 -2 2 Y
z 2 -6 5 z

Let V be the set of all vectors that are fixed by 7', which means that

V={veR®: T(v)=v}

(a) Show, using the definition of subspace, that V is a subspace of R3.

(b) Come up with an equation that also defines V. (In other words, find a linear
x

equation ax + by + cz = d such that |y| €V & ar+by+cz=4d.)
z
(c) Geometrically, what kind of object is V (point/line/plane etc)?
(d) Find a basis for V.
(5) Let V be the subspace of R* defined as

V={(w,z,y,2) ER* : w+az+y-+2z=0}

-1 0
Check that the vectors (1) and _(1) can be part of a basis for V. Then expand
0 1

the set consisting of these two vectors to a basis of V.



